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Abstract
Transportation network companies (TNC) provide mobility services that are influencing 
travel behavior in unknown ways due to limited TNC trip-level data. How they interact 
with other modes of transportation can have direct societal impacts, prompting appropri-
ate policy intervention. This paper outlines a method to inform such policies through a 
data-driven approach that specifically analyzes the interaction between TNCs and bus ser-
vices in Pittsburgh, PA. Uber surge multiplier data is used over a 6-month time period 
to approximate TNC usage (i.e., demand over supply ratio) for ten predefined points of 
interest throughout the city. Bus boarding data near each point of interest is used to relate 
TNC usage. Data from multiple sources (weather, traffic speed data, bus levels of service) 
are used to control for conditions that influence bus ridership. We find significant changes 
in bus boardings during periods of unusually high TNC usage at four locations during the 
evening hours. The remaining six locations observe no significant change in bus boardings. 
We find that the presence of a dedicated bus way transit station or a nearby university (or 
dense commercial zones in general) both influence ad-hoc substitutional behavior between 
TNCs and public transit. We also find that this behavior varies by location and time of day. 
This finding is significant and important for targeted policies that improve transportation 
network efficiency.
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Introduction

Transportation network companies (TNC), such as Uber and Lyft, have grown quickly since 
they began offering ride-hailing services in 2010 and 2012 respectively. The two services 
have provided close to 4.5 billion rides in 2017 (Johana 2018; Kerr 2018). This period of 
rapid TNC growth coincides with a 7% decline in public transit ridership in the United States 
excluding New York City (Mallett 2018). During this same period, urban car ownership has 
also increased, both adding more vehicles to urban roadways and contributing to the observed 
reduction in transit ridership (Schaller 2019). These ridership trends threaten urban sustain-
ability, public health, and transportation equity in the United States. Data-informed policies 
that consider emerging modes of travel are central to limiting rising congestion costs and 
improving mobility for vulnerable populations.

Up to this point, detailed TNC trip-level data has been closely guarded by privately held 
firms, thus limiting quantitative travel behavior analysis. For this reason, and to our best 
knowledge, the current literature that analyzes the relationship between TNCs and public tran-
sit is limited to survey-based methods, descriptive analysis, and longitudinal studies aggre-
gated at the transit agency level. However, results can vary substantially by time and location, 
which may be related to a number of factors, such as the nature of the trips, land-use, and 
socio-demographics, to name a few. This paper proposes a novel method that analyzes the 
relationship (substitutional, complementary, no interaction) between TNCs and bus services 
in Pittsburgh at a neighborhood level during different times of day, and for various weather 
and traffic conditions. Data obtained from multiple sources coupled with natural experimental 
design are utilized at a 10 min resolution to observe system behavior at a scale not observed 
in the existing literature. Uber surge multipliers, which are used as a pricing strategy to bal-
ance supply and demand, are mined over a 6 month period and used as proxies for TNC usage 
(i.e., demand over supply ratio) at various points of interest throughout the city.

Widespread mode shift from public transit to TNCs can result in increased congestion sim-
ply due to large reductions in space efficiency. A recent study by Erhardt et al. (2019) found 
TNCs to be the biggest contributor to growing traffic congestion in San Francisco between 
2010–2016. Henao (2017) also determined that less than 16% of TNC rides are shared and 
vehicle miles traveled (VMT) were over 180% compared to VMT without TNC services, fur-
ther congesting urban roadways. Continued growth in U.S. congestion costs (Cookson 2017) 
highlight the importance of promoting sustainable, efficient modes of travel. The following 
study analyzes the relationship between public transit and TNCs to help inform sustainable 
policies and infrastructure investment in a changing transportation environment.

The remainder of this paper is organized as follows. The section “Literature review and 
research gap” reviews the current literature that analyzes the interaction between TNCs and 
public transit. Section “Conceptual design”  discusses the design of the study and various 
required assumptions. Section “Data” discusses the data obtained for the analysis and the pro-
cess used to assemble the multi-source data set. Descriptive statistics summarizes the current 
system with visualizations to help provide insights into system behaviors in Pittsburgh. Sec-
tion “Methods” formulates the statistical model used to study the interaction between TNCs 
and local bus services. Section “Results” discusses model outcomes across various locations 
throughout Pittsburgh. Section “Multicollinearity and  omitted variable checks”  goes over 
the checks to ensure unbiased results. Section “Robustness testing” outlines various model 
robustness checks. And “Discussion and conclusions”  discusses results and makes recom-
mendations. Limitations of the research and future work are also discussed.
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Literature review and research gap

Relationships between TNCs and public transit have been explored in previous studies, 
and generally, three relationships exist; substitutional, complementary, and no interaction. 
A substitutional relationship exists when travelers replace transit trips with TNCs. Cur-
rently, TNC user costs remain high compared to average transit user costs in the United 
States [$1.25–$2.50/mile for non-pooled service and $0.80–$1.40/mile for pooled services 
(Sperling 2018)]. However, the convenience, flexibility, and potential travel time savings of 
TNCs often outweigh higher user costs. A complementary relationship exists when TNCs 
facilitate increased transit ridership; possibly through first- and last-mile services, or by 
providing mobility services to regions that are either poorly served by public transit or 
during times when transit becomes less reliable (Steinmetz 2016). Additionally, TNCs can 
help smooth demand peaks during transit disruptions or high demand periods by providing 
alternative mobility services. Finally, the two modes might never interact due to different 
user populations and trip types. The current research generally employs two methods due 
to inaccessible trip-level TNC data. First, survey-based methods are used to study stated/
revealed travel behavioral changes after the introduction of TNC services (Rayle et  al. 
2016; Lewis and MacKenzie 2017; Clewlow and Mishra 2017; Henao and Marshall 2018; 
Gehrke et al. 2018; Hampshire et al. 2017; Murphy and Colin 2016; Conway et al. 2018; 
Grahn et  al. 2019). Second, various statistical methods (i.e., difference-in-differences, 
regression discontinuity, longitudinal studies) are used to analyze transit ridership changes 
after the introduction of TNCs to a region (Nelson and Sadowsky 2019; Graehler et  al. 
2017; Lavieri et al. 2018; Boisjoly et al. 2018; Hall et al. 2018; Babar and Burtch 2017; Jin 
et al. 2019). In a few select cases, research groups acquired trip-level TNC data, but these 
studies were often descriptive in nature (Brown 2018; Feigon and Murphy 2018).

Substitutional behaviors between TNCs and public transit are supported by several stud-
ies using both survey and statistical methods. Rayle et al. (2016) interviewed TNC users 
( n = 380 ) at several “hot spots” in San Francisco and found that 33% of users would have 
used public transit if TNCs were not available. The driving factor for the mode substitu-
tion was related to travel time. A similar intercept study ( n = 83 ) was conducted for Uber-
HOP1 users in Seattle, Washington. The study found that 66% of users would have used 
either transit or some other form of non-motorized travel had UberHOP not been available 
(Lewis and MacKenzie 2017). Clewlow and Mishra (2017) administered an online survey 
( n = 4094 ) targeting seven major U.S. metropolitan areas and found a net change of − 6% 
in transit ridership among TNC users. In addition, 49–61% of the TNC trips would not have 
been made at all, or by either non-motorized travel or public transit if TNC services were 
not available. Surveys in Denver and Boston found 34% and 42% of trips would have been 
made by public transit had TNCs not been available (Henao and Marshall 2018; Gehrke 
et al. 2018). Hampshire et al. (2017) interviewed TNC users ( n = 1214 ) in Austin, Texas 
about mode choices after Uber and Lyft suspended services in the city. Of the respondents, 
3.7% switched to public transit for the referenced TNC trip. Nelson and Sadowsky (2019) 
used transit data at the agency level to study ridership changes before and after the arrival 
of TNCs. The study found transit ridership initially increased after the introduction of the 
first TNC. However, once a second TNC entered the market, ridership levels decreased to 
pre-TNC levels. Graehler et al. (2017) studied transit ridership changes for several North 

1  UberHOP is a fixed-route, flat-rate form of micro-transit that was piloted in Seattle, WA during 2015.
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American cities between the years of 2002–2018 and found annual decreases of 1.3% and 
1.7% for heavy rail and bus ridership, respectively. San Francisco, where Uber began ser-
vices in 2010, has observed a 12.7% decrease in transit ridership.

Several studies have also highlighted complementary relationships between TNCs and 
public transit. A report released by the Shared Use Mobility Center in 2016 surveyed users 
( n = 4551 ) of transit and other shared mobility services across seven major metropolitan 
areas. The report concluded that TNCs were largely complementary due to the high pro-
portion of TNC trips during late nights and weekends when transit services were poor or 
unavailable (Murphy and Colin 2016). Conway et al. (2018) and Grahn et al. (2019) use 
the 2017 National Household Travel Survey and conclude that TNC riders use public tran-
sit at increased rates compared to the general population, which might indicate that TNCs 
are filling transit service gaps, or are being used for first- and last-mile trips. Hoffmann 
et al. (2016) used TNC trip-level data in New York City and found a positive correlation 
between TNC and subway ridership. A 31% increase in TNC trips near subway stations 
with service disruptions was observed indicating that TNCs help smooth spikes in trans-
portation demand. Lavieri et al. (2018) analyzed TNC trip generation data in Austin, Texas 
and found that TNCs are used more frequently in areas with poor transit service, thus fill-
ing a mobility gap. Boisjoly et al. (2018) studied transit ridership changes across 25 North 
American cities between the years of 2002–2015 and found a complementary but not sig-
nificant relationship between the two modes.

The relationship between TNCs and public transit also varies by transit mode, time of 
day, and location. Clewlow and Mishra (2017) found that TNCs attracted people away from 
buses (− 6%) and light rail (− 3%), while an increase in commuter rail ridership (+ 3%) 
was observed. Brown (2018) used trip level data in Los Angeles and found that the major-
ity of trips occur in population dense areas, which is likely due to high parking costs, low 
parking availability, and shorter trips. Feigon and Murphy (2018) observed that most TNC 
trips were generated in urban cores with mean trip distances of 2–4 miles. The same study 
found that 29–44% of Saturday TNC trips were a result of reduced transit services. Hall 
et al. (2018) concluded that the introduction of Uber decreased transit ridership by 5.9% 
in “small” MSAs and increased ridership by 0.8% in “large” MSAs.2 In terms of transit 
agency size, small agencies saw a 6% increase in ridership while large agencies observed 
a 2.1% decrease. A similar study by Babar and Burtch (2017) found a 1.1% decrease in 
bus ridership after Uber market entry. Cities with high transit scores,3 such as Pittsburgh, 
did not observe a decrease in bus ridership. The same study also found a 7.2% and 2.6% 
increase in commuter rail and subway ridership, respectively. Mucci (2017) also found that 
TNCs contributed to a 7% growth in light rail ridership and a 10% decline in bus ridership 
in San Francisco.

The absence of TNC data constrains current studies to specific cities and methods, 
which result in varied outcomes and conclusions. In general, there seems to be an aggre-
gate substitutional effect between TNCs and public transit, especially for travel modes 
that share the roadways (i.e., buses, light rail). TNCs are heavily used in urban areas, 
which are the same areas that public transit performs well. However, it is hard to deter-
mine whether urban TNC trips are substitutional or complementary. Many TNC trips 

2  Small MSAs include all MSAs with populations less than the median MSA population while large MSAs 
have populations greater than the median MSA population.
3  Transit scores were obtained from AllTransit. AllTransit provides transit scores at a city level for all dif-
ferent modes of transit.
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originate at night or on the weekends, which are times when the level of service for pub-
lic transit usually declines. Smaller transit agencies benefit more from TNCs, likely due 
to limited existing transit services.

The statistical studies previously mentioned address the long-term substitutional 
behavior between TNCs and public transit. We define their results as long-term behavior 
because monthly transit ridership changes are studied over periods of time that range 
from 4 to 16 years (Hall et al. 2018; Babar and Burtch 2017; Boisjoly et al. 2018; Grae-
hler et al. 2017; Nelson and Sadowsky 2019). These studies all analyze slow changing 
trends and behaviors in the years following the introduction of TNCs.

The current literature analyzes changes in public transit ridership at the agency level and 
at a monthly resolution. However, many underlying drivers of mode substitution (e.g., trip 
type, socioeconomic status, origin/destination pair, built environment, etc.) vary by loca-
tion and time of day. These features cannot be captured in an agency level analysis and are 
extremely important characteristics to consider for transportation policy design. Therefore, 
we employ a microscopic analysis that looks at bus ridership changes in the time intervals 
of a few minutes, and for different locations in the increments of a few hundred feet. Our 
intention is to fully examine the mode substitution that is likely to vary substantially by 
time and location. The improved granularity provides new insights into time-varying travel 
behavior across different populations and built environments. Such insights can be used to 
inform policies in a more strategic manner. For example, congestion fees can be applied to 
TNC trips in specific congested areas during commute times to promote more space effi-
cient modes of travel. This type of targeted policy cannot be determined from monthly tran-
sit ridership changes that occur before and after the introduction of TNCs. This is because 
the cause of transit ridership change cannot be determined without trip-level information. 
The observed decline in monthly ridership might be driven by TNCs providing greater 
accessibility to transit-poor neighborhoods with no current congestion problems.

In other words, we study the short-term effects of TNC pricing on modal choices among 
TNC and buses in a relatively microscopic view, namely for specific points of interest in 
the city and 10-min time intervals. To our best knowledge, the spatio-temporal dynamics 
of the TNC/public transit interaction have not been addressed rigorously in the current lit-
erature except for one such study. This research, conducted by Jin et al. (2019), used buffer 
analysis and spatial cross-correlation between Uber pickups and scheduled transit services 
in New York City to conclude that Uber competes with transit during day time hours and 
complements transit during late night hours. However, this approach cannot be expanded 
to all cities where Uber data is not publicly available. In addition, our methodology dif-
fers through the use of real-time bus ridership data and modeling approaches, leading to 
differences in results and recommendations. The analysis in this paper adds to the existing 
literature in four distinct ways:

•	 The resolution of transit bus location and ridership data (10 min and by each bus stop) 
is much improved compared to previous research conducted at the MSA/transit agency 
level.

•	 The novel use of Uber and Lyft surge multiplier data to approximate demand in the 
absence of TNC trip-level data.

•	 Data from multiple sources are used to capture the effects of weather, traffic conditions, 
incidents, events, and bus level of service on bus ridership in Pittsburgh.

•	 An econometrics model is formulated to statistically analyze unusually high TNC 
demand events and the resulting changes in bus ridership for different locations and 
times of day.
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Conceptual design

The research goal is to determine if bus and TNC users are making ad-hoc decisions 
between the two modes based on the real-time TNC fares. In other words, we define the 
“substitution” to be studied in this paper as a short-term behavior where travelers are mak-
ing instantaneous choices between TNCs and buses. This definition of substitution excludes 
the long-term substitutional effect that has already taken place since the inception of TNCs 
several years ago. To accomplish this goal, we capture changes in bus ridership imme-
diately after an abrupt rise in TNC fares, compare the ridership change at various loca-
tions and times throughout the day with control variables, and finally, attempt to interpret 
the change attributed to TNC fare increases. We consider the relationship substitutional if 
significant changes in bus boardings are observed during periods of elevated TNC costs. 
The intuition is that for some trips, generalized user costs are comparable between the two 
modes. We would expect to see an increase in bus boardings when the total generalized 
TNC trip costs overtake bus costs due to an increase in TNC fares. Alternatively, if an unu-
sual number of bus riders request TNC services during a base fare period, we would expect 
to see a rise in TNC fares (due to increased TNC demand) and a decrease in bus boardings 
during the following time period. Both situations are considered substitutional because 
travelers are making instantaneous choices based on current costs. This study only ana-
lyzes the group of travelers making ad-hoc decisions between the two modes. Pre-planned 
substitutional behavior cannot be captured by our methods because an equilibrium between 
TNC riders and drivers has likely been achieved.

Elevated TNC fares are defined by a surge multiplier, which is a value that is multiplied 
by the base fare to increase user costs and driver profits. The surge multiplier increases 
in a specific location as the ratio of requested rides over the number of available drivers 
grows. The extra fare is designed to disincentivize additional ride requests in a specific 
location while, at the same time, incentivizing additional drivers to serve the area. When 
equilibrium is met, the surge multiplier drops to one,4 meaning that no additional charge is 
applied to the ride.

For this analysis, surge multiplier time periods are viewed as the “treatment”, or 
“shocks” to a group of travelers who are likely to make instantaneous choices between 
TNCs or buses for their upcoming trip. The intuition is that if the treatment is proven to be 
insignificant, then there is a strong signal that the group of travelers’ instantaneous choices 
are not being influenced by real-time prices, resulting in a non-substitutional relationship 
(i.e., travel mode has been decided before opening the ridehailing app or waiting at the bus 
stop). The underlying assumption of the model is that travelers are making instantaneous 
choices based on the observed surge price. A traveler checks either the Uber or Lyft app to 
see the cost of their specific trip, then subsequently makes a decision based on the price of 
the current trip. The treatment effect from the surge multiplier will not affect travelers who 
are not making decisions between the two modes. We assume that any change—positive or 
negative—in bus boardings during a surge event is considered a substitutional relationship 
and has direct interaction with the surge treatment variable. This is because we use a set of 
control variables for other attributes that might cause changes in bus boardings. If the surge 
event was caused by travelers who do not typically use buses, then we would expect to see 

4  The minimum surge multiplier for Uber services is 1.2, which means that the rider fare is multiplied by 
1.2, making the fare 20% greater. The minimum surge for Lyft is 25%, meaning that an additional 25% of 
the fare is charged to the rider.
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no change in bus boardings. Observed changes in bus boardings will only be from a subset 
of bus users substituting trips because we compare changes in bus boardings.

Community events can also create higher than normal demand for all modes of travel 
which can cause a simultaneous increase in bus and TNC demand. Additionally, high bus 
demand can lead to overcrowding during peak periods, which might lead to a subset of 
travelers choosing other modes, such as TNCs, for comfort or convenience reasons. Both 
scenarios observe increased bus boardings during a surge event which are not caused by 
TNC fares. We control for community events through local and network traffic speeds. 
The increase in transportation demand during large events will likely increase congestion 
and reduce traffic speeds. Recurrent traffic speed variation is addressed through time-of-
day fixed effects. For smaller events not captured through changes in roadway speeds, we 
assume that the event is not sufficiently large to trigger a surge event. In addition, the gen-
eral assumption is that 6 months of data is sufficient to smooth out the occasional high 
transportation demand periods and capture typical time-of-day conditions.

The conceptual design highlighted above is not capable of tracking individual behav-
iors. Therefore, we rely on statistical signals to infer more aggregate behaviors at specific 
locations. Privacy concerns and privately held trip-level data prohibit analysis at the indi-
vidual level. We realize that unobserved variables can cause fluctuations in bus boardings 
and/or TNC fares. To combat this, we employ a series of model robustness checks. We also 
assume that the large number of data points observed at the same location and time of day 
can adequately represent day-to-day conditions for this analysis.

Data

The Pittsburgh metropolitan statistical area population is 2.3 million people making it the 
27 largest in the United States. The intense topography requires a diverse built environ-
ment requiring almost 450 bridges to span ravines, rivers, and valleys. In addition, much 
of Pittsburgh’s transportation infrastructure is aging, thereby requiring numerous on-going 
and future construction projects causing significant traffic delays. Pittsburgh has a humid 
continental climate that is characterized by hot, humid summers and cold winters. Similar 
climates exist near and above 40 degrees latitude and east of the Mississippi River, which 
include the cities of Chicago, Cincinnati and Columbus, to name a few. Seven colleges/
universities are located in the Pittsburgh area attracting students (in-state and out-of-state) 
during the academic year. Approximately 50% of Pittsburgh workers commute to the Cen-
tral Business District each day (Daniels 2016), which is a small region representing only 
410 acres. The same survey found that 34% of workers commuted to the Oakland neigh-
borhood, which is home to both the University of Pittsburgh and Carnegie Mellon. Pitts-
burgh is known for its steel industry that was established in the late 19th century attracting 
a diverse population of immigrants to the region. Following the collapse of the steel indus-
try in the 1980s, healthcare and higher education became the two largest economic sec-
tors in the region. The results obtained in this analysis are unique to Pittsburgh, however, 
the diverse population and built environment that represent a typical U.S. post-industrial 
city provide various insights that can be translated to other metropolitan areas with similar 
characteristics.

The Port Authority of Allegheny County provides public transit services to the region 
and is the 26th largest transit agency in the United States in terms of unlinked passenger 
trips (Public Transportation Fact Book 2019). The Port Authority operates 97 bus routes, 
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3 light rail routes and 2 inclined planes in a 775 square mile service area. The service 
region includes 7000 transit stops and 52 park-and-ride lots. Approximately 85% and 12% 
of public transit riders use buses and light rail, respectively. Bus ridership increased by 
3.3% from 2017 to 2018.5 This trend might be due to three dedicated busways that serve 
the central business district from the east, west, and south directions. On average, the three 
busways account for 15% of weekday ridership.6 For cities with populations greater than 
100,000 inhabitants, Pittsburgh ranks 18th in overall proportion (17%) of commuters who 
use public transit as their primary commute mode.7 Both Uber and Lyft began operating in 
Pittsburgh in the winter of 2014. This study focuses on locations with strong transit rider-
ship throughout Pittsburgh in both inner-city and suburban areas.

Data from multiple sources were collected for the full duration of each day between 
September 2016 and March 2017 and aggregated at 10-min increments during the 6-month 
time period. Transit boarding data were obtained for each transit stop from the local tran-
sit agency. Uber surge multipliers were collected from the Uber API every 10 min for 45 
points of interest throughout the Pittsburgh region. Lyft surge multipliers were also col-
lected starting in November 2016 at the same locations. From the initial 45 locations, ten 
points of interest were selected to represent neighborhoods with diverse populations and 
built environments and that were spread out spatially throughout Pittsburgh. A minimum 
distance between each point of interest was desired to ensure that buffers did not overlap. 
The selected points of interest are also locations with strong bus ridership. During the time 
of analysis, the current surge multiplier at the location of the requester was displayed in the 
application along with the total fare. The surge multiplier was then directly stored for each 
location at each point in time. Uber surge multiplier data was used in our primary analysis 
due to their dominance in the ride-sourcing market at the time. Lyft data was used as a 
supplementary robustness check. Temperature and precipitation data were obtained from 
Weather Underground.8 INRIX traffic speeds were used to control for transportation net-
work conditions and events. Holidays were removed from the data set (Thanksgiving, the 
week between Christmas and New Year’s Day, and Martin Luther King Jr. Day) as they are 
not representative of typical weekday conditions. School breaks were also removed for the 
two university locations (University of Pittsburgh and Carnegie Mellon University).

Since surge multipliers are specific point coordinates (defined by latitude and lon-
gitude), buffer zones are created to incorporate spatial forms of data into the analysis. 
The goal is to create an area around the point of interest where surge conditions are 
likely constant, or at least very similar. TNCs do not provide any information regarding 
the size or locations of surge regions. However, an analysis exploring surge correlation 
between two nearby points of interest can provide estimates for surge region area sizes. 
Surge multipliers for downtown points of interest located less than 1500 feet from each 
other were almost perfectly correlated. Slight differences in surge multipliers existed 
when distances increased to 1700 feet or more. A map of all points of interest, buffer 
zones, bus stops, and the spatial layout of Pittsburgh can be viewed in Fig. 1.

To provide additional context regarding the points of interest, some basic neighbor-
hood characteristics were compiled in Table  1. For comparison, the population density, 

6  https​://www.pghci​typap​er.com/pitts​burgh​/how-buswa​ys-can-lead-pitts​burgh​-into-an-equit​able-publi​
c-trans​it-futur​e/Conte​nt?oid=14594​516.
7  U.S. Census Bureau, 2015 American Community Survey.
8  https​://www.wunde​rgrou​nd.com/.

5  https​://www.porta​uthor​ity.org/sitea​ssets​/servi​ces/servi​ce-reque​st/2018a​sr.pdf.

https://www.pghcitypaper.com/pittsburgh/how-busways-can-lead-pittsburgh-into-an-equitable-public-transit-future/Content?oid=14594516
https://www.pghcitypaper.com/pittsburgh/how-busways-can-lead-pittsburgh-into-an-equitable-public-transit-future/Content?oid=14594516
https://www.wunderground.com/
https://www.portauthority.org/siteassets/services/service-request/2018asr.pdf
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median income, and median age for the entire city of Pittsburgh were 5460 persons per 
square mile, $45k, and 34, respectively. The neighborhoods range from approximately 
1000–20,000 people per square mile, highlighting the diverse built environments captured 
in this analysis. The median income also ranged from $24k–$100k. A few unique features 
were added to the table to provide some additional information not captured in census data.

A monotone spline function was used to estimate the surge multiplier for a com-
mon point in time among all points of interest. For example, the University of Pitts-
burgh location might have stored surge multiplier information at 5:08, 5:18, and so on. 
The spline function was fit to the surge multiplier data to estimate the surge value at 
5:10 and 5:20. All time periods with no bus arrivals for a specific location during a 10 
min time period were removed from the data set because no choice exists between the 
two modes of transportation. The busiest transit regions observed 1–5% of time periods 
removed, while the more residential areas observed 10–14% of time periods removed.

The Port Authority of Allegheny County utilizes automatic passenger counting (APC) 
and automatic vehicle location (AVL) technologies to monitor ridership information and 
bus trajectories in real-time. Vehicle information (vehicle id, route, and capacity, among 
others) is stored along with boarding and alighting data for each stop, stop information 
(address, stop id, latitude and longitude), and bus trajectory information (Pi et al. 2018). 
Coordinate information and time stamps for each on-boarding record are used to character-
ize transit system behavior throughout Pittsburgh for different times of day.

Hourly temperature, rain, and snow data were obtained from Weather Underground. 
These variables are used to control for weather conditions that might influence transit 

Fig. 1   Surge multiplier points of interest and buffer regions in the City of Pittsburgh
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ridership. Linear interpolation methods were used to fill in weather conditions at 10 min 
increments between known values at 1 h increments.

INRIX traffic speeds were used to control for transportation network conditions. 
Real-time traffic speeds were compiled at road way segments throughout the Pittsburgh 
region. Network conditions were determined by selecting the major freeway system that 
feeds the city from each direction (North, South, East, and West). Inbound and out-
bound traffic speeds were calculated for each major freeway totalling six control vari-
ables. These roads are highlighted in blue in Fig. 2. Local corridors that directly feed 
the two main economic hubs of Pittsburgh (the Central Business District and the East 
End) were used as localized controls. These roads are highlighted with red in Fig.  2. 
Only the busiest local corridors were selected to maximize the number of records with 
real-time data.9 All four local roadways highlighted directly entering the CBD are used 
to control for conditions at Benedum Center and CONSOL Energy Center (both loca-
tions are within the CBD boundary highlighted with a dashed line). The Strip District 
only considers the two local roadways directly serving the region. Both North and South 
Side neighborhoods do not have local controls (neither are within the CBD boundary). 
However, both regions are directly served by the interstate system, which are used as a 
set of traffic control variables. Wilkinsburg, East Liberty, and Shadyside locations use 
Penn Avenue (highlighted in red) as local traffic control variables. The University of 
Pittsburgh and Carnegie Mellon locations just use I-376 as a local control.

Fig. 2   Map of interstates and local roads used

9  Data is not collected for every time period due to limited probe vehicles.



	 Transportation

1 3

Descriptive statistics

The points of interest represent a wide variety of neighborhoods and destination points. Some 
locations observe morning bus ridership peaks, some are bi-modal with bus ridership peaks 
during both morning and afternoon rush hour, and some produce only evening bus rider-
ship peaks. Figure 3 plots the ten selected points of interest in terms of average bus boardings 
by time of day considering the full 6-month duration. A large variation in bus ridership is 
observed throughout the day for different locations. The number of buses serving the point 

Fig. 3   Temporal patterns of transit boardings and bus services
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of interest are also plotted to compare bus service levels. The Benedum Center and the Uni-
versity of Pittsburgh experience high volumes of bus ridership compared to other locations. 
To illustrate the temporal trends in boardings on one figure, high volume locations are scaled 
down by a factor of five. Boardings for these two locations (indicated by dashed lines) can be 
viewed using the secondary (right) y-axis.

Surge multiplier frequencies are plotted for each location in Fig. 4 for the 6-month period. 
All locations exhibit similar trends, in that surge events happen more frequently during late 
night and early morning hours. An increased number of surge periods are also observed dur-
ing the evening commute peak at all locations. However, the counts vary from 200 surge 

Fig. 4   Temporal Uber surge event patterns by location

Table 2   Daily bus demand and level of service statistics

∗Average number of boardings per bus

Point of interest Stop count Weekday Weekend

Bus count Boardings Mean∗ Bus count Boardings Mean∗

Benedum Center 46 2630 22,325 8.50 1079 6991 6.50
Carnegie Mellon 10 463 1367 3.00 296 832 2.80
CONSOL Energy 29 911 926 1.00 518 388 0.70
East Liberty 40 889 2177 2.40 377 892 2.40
North side 32 462 664 1.40 242 292 1.20
Shadyside 32 265 663 2.50 152 288 1.90
South side 19 289 816 2.80 164 439 2.70
Strip District 12 289 144 0.50 166 31 0.20
University of Pittsburgh 25 1203 5581 4.60 615 2000 3.30
Wilkinsburg 46 783 2077 2.70 303 800 2.60
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events in Wilkinsburg up to 350 surge events in Shadyside. Neighborhood characteristics, zon-
ing, and access to transit buses likely contribute to the observed differences.

Bus demand and service levels are tabulated to provide insights into neighborhood-level 
travel behavior. Table 2 provides the number of bus stops in each buffer region along with 
daily ridership and bus counts. Alternative bus level of service statistics (headways, operat-
ing hours, etc.) don’t provide valuable insights because of the variety of routes (both low- and 
high-frequency routes with different operating hours) that serve each point of interest.

Figure 5 shows a typical weekday morning peak demand throughout the study area. One 
can see the heavy demand in the central business district area. Other high demand locations 
are captured with the points of interest selected for this study.

Methods

Uber surge multipliers are used as a proxy for unusually high TNC demand events 
with the assumption that in most cases, the number of TNC vehicles are stabilized over 
space. Unusually high TNC demand events are then compared with normal conditions 
(no surge present) in terms of bus boardings near the surge location. Local network 
traffic, incidents, bus levels of service, weather, and events are incorporated as control 
variables.

We define a “surge event” as two consecutive points in time when a surge multiplier 
was observed. By using two consecutive surge periods, random short duration surge 

Fig. 5   Morning peak bus demand heatmap for Pittsburgh
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spikes caused by a brief lack of TNC drivers can be removed from the analysis. This 
filtering method will inadvertently also remove short duration, demand driven TNC 
events. However, these missing points will not affect the overall analysis due to the large 
number of surge periods over the 6 month period. The underlying assumption is that a 
sustained 10 min surge event is most likely a demand driven event because TNC driv-
ers are provided time to relocate with higher profit incentives. A schematic of our surge 
definition is shown in Fig. 6.

Uber surge multipliers are plotted through time at one location (Wilkinsburg) dur-
ing a weekday evening to provide a visualization of a “surge event” using actual surge 
multiplier data. In Fig. 7, it can be observed that three surge events occur on March 1, 
2017 during the evening hours in Wilkinsburg. The other spikes in surge do not satisfy 
the requirement of observing a surge for at least two consecutive time periods, as those 
spikes may be attributed to random demand and supply conditions.

Total bus boardings are determined by summing all boardings for each bus stop 
within a buffer region for the 10 min following the listed time. For example, to deter-
mine bus boardings for 8:10 a.m., total boardings are summed between 8:10 a.m. and 
8:20 a.m.. This allows us to capture ridership changes immediately after the observation 
of a surge event. The number of buses traversing each buffer is also calculated to help 
control for the number of bus arrivals. This is calculated by summing the number of 
unique bus vehicle ids during the given time period. The aggregate boarding behavior is 
then compared during surge and non-surge events. We assume that all travelers within a 

Fig. 6   Surge event definition

Fig. 7   Surge multiplier plot through time for one evening in Wilkinsburg
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region are within walking distance to a bus stop that can serve their specific trip needs. 
This is because the points of interest selected are all well-served by public transit. Fig-
ure 8 displays a visual representation of the buffer region and all considered bus stops.

A data filtering process is employed to remove time periods which might compro-
mise our assumptions about system behavior. To isolate surge events and study their 
impacts, the data set was filtered to include three specific situations (1) time periods 
immediately before a surge event, (2) time periods when surge events initialize, and 
(3) all time periods when no surge multiplier is observed. The filtering process isolates 
the initialization of surge events to study changes in bus boardings during specific time 
windows. Surge time periods that occur in succession to the first observed surge multi-
plier are removed from the data set. For example, if no surge multiplier is observed at 
8:00 a.m., followed by two surge multipliers at 8:10 a.m. and 8:20 a.m., only 8:00 a.m. 
(time period immediately before the surge) and 8:10 a.m. (time period of surge event 
initialization) are retained in the data set. We focus on the first surge multiplier for two 
reasons. First, we try to eliminate scenarios of reverse causation. For example, a large 
increase in bus ridership due to high TNC fares can result in overcrowding, thus caus-
ing travelers to use alternative modes (TNCs). Second, when subsequent surge multi-
pliers are observed—likely with differing magnitudes—the attribution of bus ridership 
changes to the correct surge multiplier becomes difficult.

The interaction behavior is estimated using a linear regression model with a binary 
variable for surge periods. Independent regression models are used for each point of 
interest due to large differences in ridership patterns. The model includes a time-fixed 
effects variable for each time window, day-of-week, and month. The model can be 
viewed below in Eq. 1.

where yt represents the total transit boardings during time period t. S(t) is a binary variable 
that indicates the existence of a surge event with one and zero otherwise. �t represents the 
time-of-day fixed effect, and Xt is a matrix of control variables consisting of weather condi-
tions (rain, snow, temperature), nearby traffic conditions (inbound and outbound network 
and local traffic speeds), number of buses traversing buffer region, and the average number 
of stops per bus. CONSOL Energy Center is the home of the Pittsburgh Penguins. The 
home game schedule was used to determine event nights, which take on the value of one 
during a home game and zero otherwise. However, local traffic congestion on event night 

(1)yt = �(S(t)) + �t + ��
�
+ �t

Fig. 8   Illustration of bus boarding calculation
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also controls for this situation, which is a better indicator of periods of high transportation 
demand because only the event start time is provided in the schedule. For this reason, only 
local traffic conditions were used to control for large events at CONSOL Energy Center. 
Rain and snow variables take on a value of one if precipitation is observed, and zero oth-
erwise. The temperature variable takes on a value of 1 if the current temperature is greater 
than 45 degrees (F), and zero otherwise. The network traffic speeds are continuous vari-
ables that represent the average observed real-time traffic speeds along a select roadway/
corridor. Bus counts are used to control for the variation of real-time bus arrivals during 
a specific time period. The average number of stops per bus within a buffer region is used 
to control for local network characteristics and relative bus importance. During periods of 
congestion, the average number of stops will be reduced due to traffic, resulting in less rid-
ership. Additionally, some buses might serve only one stop in the region, which indicates 
that the specific route is likely less important to the specific neighborhood. The goal of this 
variable is to differentiate between buses who barely serve the region and thoroughly serve 
the region, as the ridership is likely to grow with an increased number of stops.

Known variables that influence bus ridership (e.g., traffic conditions, weather, bus levels 
of service, seasonality, time of day, day of week, events, incidents) are included as control 
variables. We assume that causal relations are accounted for with these control variables. 
We also assume that the data set is sufficiently large to provide statistically significant 
results.

Three different surge multiplier thresholds (1.2, 1.4, and 1.6)10 were used to define a 
“surge event”. Thresholds are used to study how the magnitude of a surge event affects bus 
boarding behavior. All surge multipliers between the base fare ( surge = 1.0 ) and the given 
threshold were removed from the specific analysis. For example, if the surge multiplier 
threshold is defined as 1.6, then all surge multipliers greater than 1.0 and less than 1.6 are 
removed from the analysis. This way, we can directly compare surge events ≥ 1.6 with peri-
ods of no surge. The comparison of bus ridership across surge threshold values is similar to 
a study by Cohon et al. (2016) that uses regression discontinuity to compare trip purchas-
ing rates for different TNC fare levels.

Results

Four time periods are selected, and the model is run for each location during each time 
period. The time periods were morning peak (7 a.m.–10 a.m.), evening peak (4 p.m.–7 
p.m.), evening/late night (7 p.m.–12 a.m.), and on weekend evenings (5 p.m.–10 p.m.). 
Weekdays consider Monday–Thursday while weekends consider Saturday and Sunday. Fri-
day was omitted because it is similar to a weekend for TNC demand but is similar to a 
weekday for public bus demand. No significant changes in bus boardings were observed 
during morning time periods for the ten locations. However, four locations (Wilkinsburg, 
East Liberty, Carnegie Mellon, and the University of Pittsburgh) exhibited significant dif-
ferences in bus boardings during evening peak and late evening hours.

The first set of results can be observed in Table 3 for weekdays between 4 p.m.–7 
p.m. for the three surge multiplier thresholds (1.2, 1.4, and 1.6). The bus count variable 
is positive and significant, meaning that more boardings are observed when a greater 

10  The thresholds were chosen to match surge multiplier levels used by Uber at the time of the study.
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number of buses traverse the buffer zone in a given time period. The fall months are all 
positive and significant which translates to increased boardings during warmer months 
compared to January (intercept term). Significant negative bus boardings are observed 
during surge events for all of the surge thresholds. One defining neighborhood feature is 
the bus rapid transit (BRT) stop that directly connects Wilkinsburg to Pittsburgh’s cen-
tral business district. The BRT stop serves 47% of all morning boardings and 58% of all 
evening boardings in the buffer zone. If the BRT stop is removed from the analysis, no 
significant changes in bus boardings are observed. The result highlights the influence of 
a BRT stop on ad-hoc substitutional behavior, which is likely a result of occasional first- 
and last-mile mode substitution.

Significant changes in bus boardings are also observed in East Liberty during week-
days from 7 p.m.–12 a.m., which corresponds to a reduction in bus boardings during a 
surge period. Similar to Wilkinsburg, when the BRT stop is not included in the analysis, 
no significant change in bus boardings are observed. This highlights the potential ad-
hoc substitutional behavior for first- and last-mile services from the BRT station. The 
regression results can be viewed in Table 4.

Significant changes in bus boardings are observed at the University of Pittsburgh dur-
ing weekdays from 7 p.m.–12 a.m. However, changes were not significant at the surge 

Table 3   Regression results for Wilkinsburg

∗
p < 0.1 ; ∗∗p < 0.05 ; ∗∗∗p < 0.01
aLocal roadway congestion in East End (See Fig. 2)

Wilkinsburg (weekday 4 p.m.–7 p.m.)

Bus boardings

Surge = 1.2 Surge = 1.4 Surge = 1.6

(1) (2) (3)

Intercept 5.961 (4.770) 8.058∗ (4.706) 7.851 (4.807)
Surge indicator − 5.088∗∗∗ (1.750) − 6.875∗∗∗ (2.106) − 6.325∗ (3.702)
Bus count 1.417∗∗∗ (0.078) 1.386∗∗∗ (0.077) 1.395∗∗∗ (0.077)
Ave. stop count 0.175 (0.363) 0.169 (0.361) 0.177 (0.361)
Temperature 0.371 (0.633) 0.528 (0.627) 0.494 (0.627)
Rain 0.651 (0.894) 0.342 (0.890) 0.439 (0.892)
Snow − 0.210 (1.088) 0.098 (1.053) 0.161 (1.062)
North I-376 (inbound) − 0.006 (0.024) − 0.0003 (0.024) − 0.001 (0.024)
South I-376 (outbound) 0.017 (0.027) 0.012 (0.027) 0.016 (0.027)
South I-279 (inbound) − 0.075 (0.063) − 0.103∗ (0.062) − 0.108∗ (0.062)
North I-279 (outbound) 0.023 (0.041) 0.014 (0.040) 0.013 (0.041)
West I-376 (inbound) − 0.043 (0.036) − 0.048 (0.036) − 0.043 (0.036)
East I-376 (outbound) 0.013 (0.047) 0.015 (0.046) 0.022 (0.046)
ES_Eastbounda 0.060 (0.106) 0.067 (0.105) 0.052 (0.106)
ES_Westbounda 0.112 (0.118) 0.131 (0.117) 0.128 (0.117)
Observations 1,343 1,370 1,372
R2 0.401 0.399 0.399

Adjusted R2 0.382 0.381 0.381
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threshold of 1.4. Consistent coefficient magnitudes and signs provide confidence in the 
results, however, uncertainty remains due to varying levels of significance between 
surge thresholds. The regression results can be viewed in Table 5.

Significant changes in bus boardings were also observed at Carnegie Mellon on the 
weekends between 5 p.m.–10 p.m.. Many students rely on city bus services to and from 
campus. The Carnegie Mellon buffer only includes bus stops directly adjacent to campus, 
meaning that nearly all bus users considered in this analysis are affiliated with the univer-
sity. The regression results can be viewed in Table 6.

Of the ten points of interest, four locations produced significant changes in bus board-
ings during periods of unusually high TNC demand. The significant results were only 
observed during specific times of day (evening hours). The observed results are likely due 
to a unique combination of built environment, existing bus services, and population charac-
teristics present within the specific neighborhood. The presence of BRT stops in Wilkins-
burg and East Liberty are key contributors to observed changes in bus boardings. The 
results at Carnegie Mellon are likely due to the relatively homogenous population affiliated 
with the university (tech savvy and well-educated). Previous literature has shown no aggre-
gate substitutional effects in Pittsburgh (Babar and Burtch 2017), however, upon further 

Table 4   Regression results for East Liberty

∗
p <0.1; ∗∗p <0.05; ∗∗∗p <0.01
aLocal roadway congestion in East End (See Fig. 2)

East Liberty (weekday 7 p.m.–12 a.m.)

Bus boardings

Surge = 1.2 Surge = 1.4 Surge = 1.6

(1) (2) (3)

Intercept 0.428 (5.366) − 0.126 (5.143) 0.063 (5.128)
Surge indicator − 2.949 (1.794) − 2.674∗ (1.601) − 3.322∗ (1.907)
Bus count 1.889∗∗∗ (0.092) 1.862∗∗∗ (0.090) 1.874∗∗∗ (0.089)
Ave. stop count 0.145 (0.190) 0.140 (0.185) 0.133 (0.184)
Temperature 0.430 (0.462) 0.473 (0.446) 0.493 (0.443)
Rain − 1.171 (0.726) − 1.043 (0.712) − 1.040 (0.700)
Snow − 1.373 (0.957) − 1.329 (0.903) − 1.290 (0.909)
North I-376 (inbound) − 0.006 (0.031) − 0.009 (0.030) − 0.008 (0.029)
South I-376 (outbound) 0.037 (0.045) 0.045 (0.044) 0.047 (0.044)
South I-279 (inbound) − 0.050 (0.039) − 0.050 (0.038) − 0.048 (0.037)
North I-279 (outbound) 0.015 (0.044) 0.027 (0.042) 0.022 (0.042)
West I-376 (inbound) 0.014 (0.052) 0.002 (0.050) 0.004 (0.050)
East I-376 (outbound) 0.004 (0.047) 0.005 (0.046) 0.002 (0.046)
ES_Eastbounda 0.021 (0.055) 0.029 (0.054) 0.028 (0.053)
ES_Westbounda − 0.078 (0.074) − 0.085 (0.072) − 0.098 (0.072)
Observations 1,118 1,156 1,165
R2 0.469 0.469 0.473

Adjusted R2 0.443 0.444 0.448
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evaluation, potential ad-hoc substitutional behaviors were observed at a local scale. Local 
substitutional behavior can lead to network inefficiencies, especially during times of peak 
congestion, which highlights the importance of a high resolution, spatio-temporal analysis.

The previous results conclude that a significant change in bus boardings is observed for 
different surge thresholds. The above analysis compares all surge events above a certain 
threshold (treatment) to the time periods when no surge event is observed (control). To 
study how ad-hoc behavior varies as a function of the surge magnitude, a dummy variable 
was created for each different threshold level (1.2, 1.4, 1.6). The model was fit using three 
surge binary variables and the coefficients were plotted in Fig. 9 along with their respective 
90% confidence intervals. By observation, we cannot conclude that surge coefficients are 
significantly different from one another. However, the data is limited for specific locations 
and times of day because surge events are rare.

Multicollinearity and omitted variable checks

A multicollinearity test to determine the level of correlation between independent vari-
ables was conducted by calculating variance inflation factors (VIF). Generalized variance 
inflation factors (GVIF) were calculated because the degrees of freedom for the time of 
day variable is greater than one. A widely used threshold in the research field is VIF < 
5. Since GVIF is adjusted from VIF based on the number of degrees of freedom for each 

Table 5   Regression results for University of Pittsburgh

∗
p <0.1; ∗∗p <0.05; ∗∗∗p <0.01

University of Pittsburgh (weekday 7 p.m.–12 a.m.)

Bus boardings

Surge = 1.2 Surge = 1.4 Surge = 1.6

(1) (2) (3)

Intercept − 37.585∗∗∗ (11.470) − 39.612∗∗∗ (11.131) − 39.804∗∗∗ (11.108)
Surge indicator 5.040∗ (2.615) 4.671 (3.022) 8.886∗∗∗ (3.376)
Bus count 4.913∗∗∗ (0.160) 4.865∗∗∗ (0.158) 4.853∗∗∗ (0.156)
Ave. stop count 9.651∗∗∗ (0.661) 9.464∗∗∗ (0.649) 9.577∗∗∗ (0.650)
Temperature − 2.110∗∗ (1.058) − v2.490∗∗ (1.029) − 2.462∗∗ (1.028)
Rain 0.472 (1.730) 0.874 (1.694) 0.610 (1.691)
Snow 4.828∗∗ (2.384) 5.754∗∗ (2.308) 5.482∗∗ (2.311)
North I-376 (inbound) 0.025 (0.066) 0.051 (0.065) 0.061 (0.064)
South I-376 (outbound) 0.093 (0.090) 0.075 (0.087) 0.055 (0.087)
South I-279 (inbound) 0.173∗∗ (0.077) 0.180∗∗ (0.075) 0.193∗∗∗ (0.074)
North I-279 (outbound) − 0.013 (0.089) − 0.005 (0.087) 0.004 (0.087)
West I-376 (inbound) 0.016 (0.104) 0.010 (0.102) 0.029 (0.102)
East I-376 (outbound) 0.066 (0.102) 0.076 (0.100) 0.053 (0.100)
Observations 1567 1625 1638
R2 0.695 0.694 0.693

Adjusted R2 0.685 0.684 0.683
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Table 6   Regression results for Carnegie Mellon

∗
p <0.1; ∗∗p <0.05; ∗∗∗p <0.01

Carnegie Mellon (weekend 5 p.m.–10 p.m.)

Bus boardings

Surge = 1.2 Surge = 1.4 Surge = 1.6

(1) (2) (3)

Intercept − 20.162∗∗ (8.638) − 14.684∗ (8.009) − 15.392∗ (7.990)
Surge indicator 3.836∗∗ (1.661) 4.555∗∗ (1.853) 4.776∗∗ (1.901)
Bus count 4.436∗∗∗ (0.269) 4.437∗∗∗ (0.258) 4.465∗∗∗ (0.252)
Ave. stop count 4.479∗∗∗ (0.437) 4.334∗∗∗ (0.404) 4.442∗∗∗ (0.404)
Temperature 0.098 (0.952) 0.186 (0.897) 0.218 (0.895)
Rain 2.969 (1.837) 2.698 (1.737) 2.913∗ (1.744)
Snow 0.130 (1.984) 0.293 (1.884) 0.930 (1.851)
North I-376 (inbound) 0.074∗ (0.043) 0.096∗∗ (0.041) 0.097∗∗ (0.040)
South I-376 (outbound) 0.088 (0.065) 0.085 (0.062) 0.068 (0.062)
South I-279 (inbound) 0.013 (0.075) − 0.020 (0.070) − 0.025 (0.069)
North I-279 (outbound) 0.018 (0.084) − 0.025 (0.080) − 0.022 (0.079)
West I-376 (inbound) − 0.123∗ (0.072) − 0.132∗ (0.069) − 0.125∗ (0.069)
East I-376 (outbound) 0.044 (0.052) 0.048 (0.049) 0.065 (0.048)
Observations 615 645 670
R2 0.542 0.543 0.537

Adjusted R2 0.504 0.507 0.502

Fig. 9   Fitted coefficients with 90% CIs
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variable, then squaring the GVIF value provides an accurate comparison to recommended 
VIF thresholds used in the literature. For the three cases highlighted in the above results, 
GVIFs were not greater than 1.5, meaning that VIF < 2.25 . The low VIF indicates minimal 
collinearity in the models highlighted above.

A second check was conducted to assess the likelihood of omitted variable bias. Jack-
knife residual plots were used to check the assumption of zero conditional mean of the 
errors. In other words, a check was conducted to ensure that omitted variables that influ-
ence bus boardings are not correlated with any of the independent variables. The residual 
plots are shown for Wilkinsburg, University of Pittsburgh, East Liberty, and Carnegie Mel-
lon in Fig. 10 during the times when significant changes in bus boardings were observed. 
The assumption of zero conditional mean of the error seems to generally hold across the 
four locations.

Fig. 10   Jackknife residual plots
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Robustness testing

Model robustness checks were conducted using three different strategies to address uncer-
tainty and model design. These checks are in addition to varying the surge multiplier 
threshold, which is also considered a robustness check in this analysis. First, the actual size 
of the surge region is unknown. This region is determined by Uber/Lyft and is not public 
information. Point coordinates are used to mine surge multiplier information. We approxi-
mate the surrounding surge region by analyzing the correlation between different points at 
varying distances between one another. Second, we want to ensure that the indicator vari-
able for a surge event is actually capturing the surge event itself. To address this modeling 
assumption, the surge indicator variables are shifted one time period prior when no surge 
multiplier is observed. It is expected that a shift in surge indicator variables would turn 
up insignificant results for bus boarding coefficients. Third, a propensity score weighted 
regression model was used to control for confounding variables. This was accomplished 
by weighting control group data points to produce similar propensity scores between both 
control and treatment groups.

Buffer radius sensitivity

A correlation analysis was conducted looking at surge multiplier correlation between 
various points of interest based on the distance separating the locations. Surge multipliers 
were almost perfectly correlated for the locations separated by less than 1500-ft. However, 
two locations separated by 1700-ft observed differences in surge multiplier values. It is 
also known that the size of surge multiplier regions determined by Uber and Lyft vary 
with urban density and other characteristics. Due to this uncertainty, two additional buffer 
radii—one larger and one smaller—were selected to evaluate model robustness.

Buffers with radii of 1000-ft and 2000-ft are used, in addition to the base case radius 
of 1500-ft, to determine total transit boardings for each time period. Both Carnegie Mel-
lon and the University of Pittsburgh locations produced similar results for the treatment 
coefficient (significance, sign, and magnitudes) for all three buffer radii. Wilkinsburg pro-
duced similar results for a buffer radius of 2000-ft. Results for the 1000-ft buffer radius 
yielded no significant results for the surge treatment variable. Upon further analysis, the 
BRT station that provides direct service to the central business district was not included in 
the 1000-ft buffer. When the BRT station is not included in the analysis, the results become 
insignificant, indicating a clear interaction between TNCs and transit buses at BRT sta-
tions. The East Liberty location was similar to Wilkinsburg. Magnitudes and levels of sig-
nificance for the surge treatment variables were similar for the 1500-ft and 2000-ft buffer 
radii. However, the 1000-ft radius case produced no significant results for the surge treat-
ment coefficient. The same situation is observed for East Liberty in that the BRT station 
is not included in the analysis when the buffer radius is 1000-ft. The regression results for 
each location and buffer region can be viewed in the supplemental materials.

Surge treatment variation

The surge indicator variable was also shifted one time period prior to the actual surge event. 
This test is to ensure that the indicator variable was capturing the surge event. Since the 
surge treatment variable no longer indicates a surge event, we would expect the treatment 
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variable to be insignificant. For the four locations, the treatment variable becomes insig-
nificant for all surge thresholds. This observation provides us confidence that the treatment 
variable is capturing the surge event. Regression tables for the surge treatment variation 
tests can be viewed in the supplemental materials.

Propensity score weighted regression

A propensity score weighted regression model was formulated to further evaluate locations 
where significant bus ridership changes were observed. A weighted regression was chosen 
instead of using propensity score matching simply due to the number of data points defin-
ing a surge event. The number of surge events for a given 4-h time period varied between 
approximately 25–50 for the different locations. The goal of propensity score matching is 
to select the data points from both the treatment and control groups that produce a similar 
propensity score (probability of treatment). This way, the study is “randomized” in a way 
because both groups have a treatment probability of 0.5. However, in our case, most data 
points are removed, and we are left with few data points for the final analysis. For this rea-
son, a weighted regression was used to evaluate model robustness. The method assigns data 
points with similar propensity scores between treatment and control groups larger weights.

The incoming and outgoing freeway conditions were omitted when calculating propen-
sity scores because they were not important for predicting bus ridership. The standard-
ized differences between the weighted and unweighted covariates were less than 0.1 in all 
cases, indicating a balanced model. The weighted linear regression results produced simi-
lar results for the treatment variable in terms of sign and magnitude for both the Wilkins-
burg and East Liberty locations. The significance values for the East Liberty location were 
greater for the weighted linear regression. The weighted linear regression for the Carnegie 
Mellon location produced positive ridership changes for all surge thresholds, however, only 
the threshold at 1.6 was significant. The University of Pittsburgh produced similar results 
for surge thresholds of 1.2 and 1.6. However, a flip in sign was observed for a surge thresh-
old of 1.4. Upon further evaluation, this result becomes positive and insignificant when 
using buffer radii of 1000-ft and 2000-ft (consistent with other models). The unique com-
bination of a 1500-ft buffer radius and a propensity score weighted regression produced a 
chance result that is not robust. All propensity score weighted regression results are pro-
vided in the newly attached supplemental materials.

Analysis using Lyft data

Surge multipliers were collected over a 4.5 month period during the same time period 
(November 2016–March 2017) to compare TNC and transit bus interactions with Lyft 
users. We conduct the same analysis previously outlined in the “Methods” section; how-
ever, Lyft surge multipliers are used instead of Uber. The fixed-effects model was used for 
the four significant locations (East Liberty, Wilkinsburg, University of Pittsburgh, and Car-
negie Mellon) and times of day outlined in the “Results” section. The treatment coefficient 
that indicates a surge event was insignificant for all scenarios. This result is likely due to 
small ridership numbers as opposed to any behavioral differences between Lyft and Uber 
users. However, if this same analysis was conducted on current data, different results might 
be observed because Lyft has grown significantly in previous years.
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Discussion and conclusions

In this analysis, we assume ad-hoc substitutional behavior to be any change in bus board-
ings (positive or negative) during a surge event. Because we are only analyzing a sub-group 
of transit users making ad-hoc decisions, the sign of the coefficient isn’t important. While it 
is true that a negative coefficient would indicate people are switching from buses to TNCs 
and opposite for a positive coefficient, the sign of the result might come down to timing 
and local conditions. For example, a bus load of commuters arriving at a BRT station dur-
ing an evening commute is very different compared to students at Carnegie Mellon head-
ing home after a weekend class meeting. In the first case, a larger than normal subset of 
commuters exits the bus and decides to order a TNC for last-mile services during base 
fares. This will cause a surge event and a reduction in bus ridership in the subsequent time 
window (i.e., a negative coefficient). In the Carnegie Mellon case, students might open a 
TNC app and observe very high fares, and subsequently wait for the next arriving bus (i.e., 
a positive coefficient). The point is that both scenarios are substitutional because travel-
ers are making decisions between the two modes. The sign of the coefficient is helpful in 
determining the direction of substitution; however, the sign likely changes throughout the 
day even at the same location. Therefore, we focus our analysis to any significant changes 
at specific locations and conclude that both positive and negative signs represent ad-hoc 
substitutional behavior. In the case where no significant changes are observed, we assume 
that the two modes do not interact. This situation corresponds to pre-planned trips and/or 
different user groups for the two modes.

We assume that changes in bus ridership in real time are controlled by time-of-day 
effects, weather conditions, day of week, season, network and local traffic conditions, bus 
levels of service, and incidents. We compile surge event data with all control variables for 6 
months for ten points of interest. We assume that the shock of a surge event directly affects 
the ad-hoc modal choices of travelers, and network conditions (i.e., incidents, congestion, 
trip purpose, etc.) do not change substantially from 5 min prior to the shock until 10 min 
after the shock. Several robustness checks are conducted (e.g., multicollinearity checks, 
residual plots, lagged treatment variables, varying buffer size, propensity score regression) 
to ensure consistent results, check for omitted variable bias (i.e., underlying factors that 
affect transportation demand), and to assess if the treatment variable is accurately captur-
ing the surge event.

Data from multiple sources are used to assess the time-dependent relationship between 
buses and TNCs at various locations in Pittsburgh. The results from this analysis largely 
corroborate previous research in that no significant changes in bus ridership were observed 
during surge events for most locations and times of day. However, four locations did 
observe significant changes to bus boardings during select time periods. These results 
highlight the dynamic interaction between TNCs and public transit that changes by loca-
tion and time of day.

Wilkinsburg observed reduced bus boardings immediately after a TNC surge event dur-
ing the weekday evening commute (4 p.m.–7 p.m.). The presence of a BRT station that 
directly serves Pittsburgh’s central business district contributes to these findings. When this 
transit station isn’t included in the analysis, no significant change in bus boardings were 
observed. The East Liberty location observed a significant change in bus boardings dur-
ing weekday evening/late night hours (7 p.m.–12 a.m.) during a surge event. The presence 
of a BRT station within the buffer region contributes to this result because no significant 
change is observed with the removal of the BRT station from the analysis. This result is 
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similar to Wilkinsburg for workers who might return after 7 p.m. or individuals return-
ing home from late night social events in downtown Pittsburgh. The university locations 
observed significant increases in bus boardings during surge periods on weeknights (7 
p.m.–12 a.m. for the University of Pittsburgh) and weekend evenings (5 p.m.–10 p.m. for 
Carnegie Mellon). The positive coefficient for bus boardings during a surge event might 
indicate that students are more flexible with their travel plans. The fact that students at both 
universities are provided with transit passes might also play a role. Students are also likely 
to be more sensitive to price changes due to limited income.

To summarize, we find that BRT stations influence mode choice between TNCs and 
buses. Two locations—the only two with a BRT station located inside the buffer region—
produced significant changes in bus boardings during surge events at specific times of 
day. The BRT is similar to commuter rail in that high volumes of commuters utilize the 
service during weekday commutes. Previous research has highlighted a possible relation-
ship between the two modes (Babar and Burtch 2017; Clewlow and Mishra 2017), and the 
observed results corroborate previous findings. The study also finds that an ad-hoc sub-
stitutional relationship exists near university locations. Both University of Pittsburgh and 
Carnegie Mellon produced significant results during specific times of day—weekdays 7 
p.m.–12 a.m. for the University of Pittsburgh and weekends from 5 p.m.–10 p.m. for Car-
negie Mellon. The underlying causes of these results are more challenging but could be 
related to neighborhood population characteristics, lack and/or cost of parking, among oth-
ers. And finally, we find that the relationship between TNCs and buses varies by location 
and time of day. This result emphasizes the need for high resolution data and analysis tech-
niques for efficient policy design and infrastructure investment.

To explore these findings further, a joint model was constructed to analyze how uni-
versities and BRT stations might influence ad-hoc mode choice between TNCs and buses. 
New distance-based covariates were created as a proximity measure for each point of inter-
est and the nearest university and BRT station. However, spatial features—roadway traf-
fic congestion and incidents—were removed because these variables were unique to each 
neighborhood. Since each point of interest observes different bus use behavior throughout 
the day, an interaction term was used for the location and time-of-day controls. The fitted 
distance metrics—proximity to universities and BRT stations—were insignificant and very 
small (0.001). This result highlights the complexity and multitude of factors that come into 
play in travel decision making. For example, BRT user behavior doesn’t vary linearly as the 
distance from the BRT station increases. There is likely some threshold where travelers no 
longer consider the BRT, and this threshold varies with population characteristics and the 
built environment.

The results highlighted in this analysis are specific to Pittsburgh. However, many other 
U.S. cities might observe more significant interactions based on their constituents and built 
environment characteristics. We find that the relationship between TNCs and public transit 
is location and time dependent. Effective policies must consider these relationship dynam-
ics when trying to promote sustainable modes at specific locations and times of day.

The measure of TNC usage in this analysis is through a proxy (surge multiplier). This 
is not ideal, but in the absence of TNC trip-level data, this method can help approximate 
TNC usage in time and space. It is important to note that many locations might observe 
high TNC demand without a surge multiplier due to many drivers currently located in the 
same location. We cannot detect these situations with methods outlined in this paper. We 
are also not able to detect pre-planned or long-term substitutional behavior because it is 
likely that an equilibrium between TNC users and drivers has already been met. We also 
use the first instance of a surge event to define the treatment variable for a “surge event”. 
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All subsequent surge time periods are removed due to the complicated dynamics that are 
challenging to decouple. This design limits the data and the types of events we can detect.

This research and the previous literature both highlight the fact that commuter type ser-
vices (e.g., commuter rail, bus rapid transit) could pair well with TNCs for first and last 
mile services. This would depend on the type of commuter service, the built environment, 
cost and access to parking, and fares, among others. It is also important to note that loca-
tions (or times of day) will not observe the same behavior simply due to the presence of a 
BRT station. The varying travel behavior in time and space is highlighted in this research. 
While this is an important first step, the underlying drivers that influence heterogeneous 
travel behavior are extremely important features to consider when designing transporta-
tion policy. From this point, we highlight two future directions that can both help inform 
policies and designs that can improve network efficiency. First, a more thorough analysis of 
data and/or surveys that are specific to regions near large commuter transit stations. A bet-
ter understanding of how people arrive, depart, and make choices as part of a multi-modal 
trip can help isolate areas where future TNC/transit partnerships might be viable. Second, 
further analysis that studies travel behavior in the face of emerging technologies and modes 
of travel. What are the factors that influence mode choice and how do socioeconomics and 
the built environment fit into the decision making-process?

Supplemental materials

The full estimation results for each location and time of day can be found at Github (https​
://githu​b.com/rgrah​n/tnc_publi​c_trans​it). Data sets and statistical analysis are also pro-
vided. The data files included are: (1) mapping between individual buffers and bus stops, 
(2) Hourly weather data, (3) sporting events data, (4) incidents data. The INRIX data is not 
provided because we have an NDA in place. The raw transit ridership and surge multiplier 
data are too large to post on Github. They can be provided upon request.
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